

Higher Order Universal One-Way Hash Functions

Deukjo Hong¹, Bart Preneel², Sangjin Lee¹

¹CIST, Korea University ²ESAT-COSIC, K.U. Leuven

Contents

- 1. CRHFs and UOWHFs
- 2. Merkle-Damgård construction
- 3. Constuctions for extending UOWHFs
- 4. Motivation of our work
- 5. Higher order UOWHFs
- 6. Two constructions based on Higher Order UOWHFs – MD construction and Tree construction
- 7. Conclusion

Collision-Resistant Hash Function (CRHF)

Let $H : \Sigma^k \times \Sigma^m \to \Sigma^c$ be a hash function family, where $m \ge c$. H is (t, ϵ) -CRHF if any adversary A with at most running time t cannot win the following game with at least success probability ϵ :

$$\begin{array}{l} \textbf{Game(CRHF, A, H)} \\ \textbf{K} \leftarrow_{R} \Sigma^{k} \\ \textbf{A}(\textbf{K}) \rightarrow (\textbf{x}, \textbf{x}') \end{array} \end{array} \begin{array}{l} \text{If } \textbf{x} \neq \textbf{x}' \text{ and} \\ \textbf{H}(\textbf{K}, \textbf{x}) = \textbf{H}(\textbf{K}, \textbf{x}') \\ \text{then A wins} \\ \text{the game.} \end{array}$$

Universal One-Way Hash Function (UOWHF)

Let $H : \Sigma^k \times \Sigma^m \to \Sigma^c$ be a hash function family, where $m \ge c$. H is (t,ϵ) -UOWHF if any adversary $A=(A_1,A_2)$ with at most running time t cannot win the following game with at least success probability ϵ :

> Game(UOWHF, A, H) $A_1(\cdot) \rightarrow (x, State)$ $K \leftarrow_R \Sigma^k$ $A_2(K, x, State) \rightarrow x'$

If x≠x' and H(K,x)=H(K,x') then A wins the game.

CRHFs vs UOWHFs

- H is (t,ϵ) -CRHF \Rightarrow H is (t,ϵ) -UOWHF.
- Definition of CRHF is stronger than Definition of UOWHF.
- UOWHF can be used as an alternative primitive for CRHF. (e.g. digital signature)

Merkle-Damgård Construction

- The most popular way for extending hash functions.
- It preserves the collision resistance.
- MD_r[H]: r-round Merkle-Damgård construction based on H.

Constructions for extending UOWHFs

- MD construction cannot be used for UOWHFs.
- Bellare and Rogaway showed there exists a H; H is UOWHF but MD₂[H] is not UOWHF.
- Bellare and Rogaway proposed 4 constructions for extending UOWHF hashing finite-length messages to one hashing arbitrary-length messages. The other suggested constructions for extending UOWHFs are based on them.
- Problem: The key size grows with the message length.

Constructions for extending UOWHFs

CIST

Constructions for extending UOWHFs

< Bellare and Rogaway's constructions (2) >

Tree Hash

 $\begin{array}{c} X_1 X_2 X_3 \\ \downarrow \\ H_{K1} \\ H_{K1$

XOR Tree Hash

Motivation

- The most important thing to constructions for extending UOWHFs is reducing the total length of the key as small as possible.
- MD construction is more efficient in key size than any other schemes for UOWHFs.
- If MD_r[H] is UOWHF, then extending MD_r[H] is better than extending H.
- It seems that there exists H such that MD_r[H] is UOWHF in spite of Bellare and Rogaway's counterexample.

CIST

Contribution

- We propose the new definition, Higher Order Universal One-Way Hash Function.
- We prove that if H is a higher order UOWHF, then $MD_r[H]$ and $TR_l[H]$ are UOWHF.
- Thereby, the notion of higher order UOWHF helps reducing key sizes of any constructions for extending UOWHFs.
- We focus on the security about equal-length collisions (Theorems 1 and 3). Theorems 2 and 4 are also interesting but less useful in this issue.

Higher Order UOWHF (of order r)

Let $H : \Sigma^k \times \Sigma^m \to \Sigma^c$ be a hash function family, where $m \ge c$. H is (t,ϵ) -UOWHF(r) if any adversary A= (A_1, A_2) with at most running time t cannot win the following game with at least success probability ϵ :

Game(UOWHF(r), A, H) κ←_RΣ^k; Q←∅

 $A_1(Q)$ ask adaptively r queries to $O^{H(K,\cdot)}$. $A_1(Q) \rightarrow (x,State)$

 $A_2(K,x,State) \rightarrow x'$

If x≠x' and H(K,x)=H(K,x') then A wins the game.

MD construction and UOWHF(r)

- The following sets of functions are considered under same key space, domain, and range.
 - CRHF = {h : h is CRHF}
 - $MD_r = \{h : h \text{ and } MD_r[h] \text{ is } UOWHF \}$
 - UOWHF(r) = $\{h : h \text{ is UOWHF}(r)\}$

Theorem 1

- $H: \Sigma^k \times \Sigma^{c+m} \to \Sigma^c$ is (t', ε') -UOWHF(r). \checkmark
- $MD_{r+1}[H] : \Sigma^k \times \Sigma^{c+(r+1)m} \to \Sigma^c$ is (t, ε) -UOWHF, where
 - $-\epsilon = (r+1)\epsilon'$ and
 - $t = t' \Theta(r)(T_H + m + c).$

Proof of Theorem 1

Tree Construction

Theorem 3

• $H: \Sigma^k \times \Sigma^{dc} \to \Sigma^c$ is (t', ε') -UOWHF(r). - r = $(d^l-d)/(d-1)$.

• $TR_{I}[H] : \Sigma^{k} \times \Sigma^{cdI} \rightarrow \Sigma^{c}$ is (t, ε) -UOWHF, where

$$-\epsilon = (r+1)\epsilon'$$
 and,

Korea uni

$$- t = t' - \Theta(d^{I})(T_{H} + dc).$$

Proof of Theorem 3

Assume that A is adversary for $MD_{r+1}[H]$ in the UOWHF sense. Build an adversary B for H in the UOWHF(r) sense.

Conclusion

- If the order of the underlying UOWHF H is r, then MD_{r+1}[H] is also a UOWHF. If MD_{r+1}[H] is used as a compression function in any other linear structural constructions, the key size can be reduced with at most a factor of (r+1).
- If the order of the underlying UOWHF H is r = (dⁱ-d)/(d-1), then TR_i[H] is also a UOWHF. If TR_i[H] is used as a compression function in any other tree structural constructions, the key size can be reduced with at most a factor of I.

11